This work reports on a theoretical investigation of a double Cd1-xZnxS quantum dot embedded in an insulating material.The quantum dots are assumed to have a flattened cylindrical geometry with a finite barrier at the boundary.The energy levels splitting has been computed, using the tight binding approximation, in the case of the heavy and light holes, as a function of zinc composition for different inter-quantum dot separations. An analysis of the results shows that, for the light holes, the coupling is maximum when x=0.8. Moreover, it has been demonstrated the strong localization character of the heavy holes in this nanostructure.
Published in | American Journal of Nano Research and Applications (Volume 5, Issue 3) |
DOI | 10.11648/j.nano.20170503.11 |
Page(s) | 32-36 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Double Quantum Dot, Cd1-xZnxS, Heavy and Light Holes, Tight Binding Approximation, Non Volatile Memories
[1] | A. Sakly, N. Safta and A. Ben Lamine. (2004), Interpretation of the bowing phenomenon in Cd1-xZnxS alloy’’ J. Mater. Sci.-Mater. Electron.15: 351. |
[2] | N. A. Shah, A. Nazir, W. Mahmood, W. A. Syed, S. Butt, Z. Ali and A. Maqsood. (2012), Physical properties and characterization of Ag doped CdS thin films J. Alloys Compd. 512: 27. |
[3] | T. P. Kumar, S. Saravanakumar and K. Sankaranayanan. (2011), Effect of annealing on the surface and band gap alignment of CdZnS thin films’’, Appl. Surf. Sci. 257 (6): 1923. |
[4] | B. Bhattacharjee, S. K. Mandal, K. Chakrabarti, D. Ganguli and S. Chaudhui. (2002), Optical properties of Cd1−xZnxS nanocrystallites in sol–gel silica matrix’’ J. Phys. D: Appl. Phys. 35: 2636-2642. |
[5] | H. H. Gürel, Ö. Akinci and H. Ünlü. (2008), Tight binding modeling of CdSe/ZnS and CdZnS/CdS II–VI heterostructures for solar cells: Role of d-orbitals’’ Thin Solid Films 516: 7098. |
[6] | M. Gunasekaram, M. Ichimura. (2007) Photovoltaic cells based on pulsed electrochemically deposited SnS and photochemically deposited CdS and Cd1−xZnxS,’’ Sol. Energy Mater. Sol. Cells. 91: 774. |
[7] | Z. Khéfacha, M. Mnari and M. Dachraoui (2002) Caractérisation des couches minces de Cd1–xZnxS préparées par dépôt chimique,’’ Comptes Rendus Chimie. 5(3): 149-155. |
[8] | Z. Khéfacha, Z. Benzarti, M. Mnari and M. Dachraoui, (2004) “Electrical and optical properties of Cd1-xZnxS (0≤x≤0.18) grown by chemical bath deposition”, Journal of crystal growth.260: 400- 409. |
[9] | Z. Khéfacha, M. Mnari and M. Dachraoui (2003) Opto – electronical of thin films prepared by chemical bath deposition,’’ Physical and Chemical News. 14:77-84. |
[10] | A. J. Peter and C. W. Lee. (2012), Electronic and optical properties of CdS/CdZnS nanocrystals’’ ChinesePhys. B 21: 087302. |
[11] | F. Scotognella, G. Lanzani, L. Manna, F. Tassoneand M.Zavelani-Rossi. (2012), Study of higher-energy core states in CdSe/CdS octapod nanocrystals by ultrafast spectroscopy’’ Eur. Phys. J. B. 85: 128. |
[12] | L. Cao, S. Huang and S. E. (2004), ZnS/CdS/ZnS quantum dot quantum well produced in inverted micelles’’ J. colloidInterface Sci. 273: 478-482. |
[13] | H. Kumano, A. Ueta and I. Suemune. (2002), Modified spontaneous emission properties of CdS quantum dots embedded in novel three-dimensional microcavities’’ Physica E 13: 441-445 |
[14] | Y. C. Zhang, W. W. Chen andX. Y. Hu. (2007), ‚‘In air synthesis of hexagonal Cd1-xZnxS nanoparticles from single-source molecular precursors’’ Mater. Lett. 61: 4847-4850 |
[15] | C. S. Pathak, D. D. Mishra, V. Agarawala, M. K. Mandal. (2012), Mechanochemical synthesis, characterization and optical properties of zinc sulphide nanoparticles’’ Indian J. Phys86: 777-781. |
[16] | S. Roy, A. Gogoi and G. A. Ahmed. (2010), Size dependent optical characterization of semiconductor particle: CdS embedded in polymer matrix Indian J. Phys. 84: 1405-1411 |
[17] | A. U. Ubale and A. N. Bargal. (2010), Characterization of nanostructured photosensitive cadmium sulphide thin films grown by SILAR deposition technique’’ Indian J. Phys. 84: 1497-1507 |
[18] | K. K Nanda, S.N. Sarangi, S. Mohanty, S.N. Sahu. (1998), ‚‘Optical properties of CdS nanocrystalline films prepared by a precipitation technique’’ Thin Solid Films 322: 21-27. |
[19] | N. Safta. (2004), Fluctuations mode of the gap as a function of composition of Cd1-xZnxS ternaries’’ Ann. Chim. Sci. Mat. 29 (5) 105-112 |
[20] | H. Yükselici, P. D. Persans and T. M. Hayes. (1995), Optical studies of the growth of Cd1-xZnxS nanocrystals in borosilicate glass Phys. Rev. B. 52: 11763. |
[21] | N. -K. Cho, J.-W. Yu, Y. H. Kim, and S. J. Kang. (2014) "Effect of oxygen plasma treatment on CdSe/CdZnS quantum-dot light-emitting diodes," Jpn. J. Appl. Phys. 53: 032101. |
[22] | Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun. (2014) "Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping," Adv. Mater, Doi: 10.1002/adma.201403237. |
[23] | J. J. Beato-López, C. Fernández-Ponce, E. Blanco, C. Barrera-Solano, M. Ramírez-del-Solar, M. Domínguez, F. García-Cozar, and R. Litrán.(2012) "Preparation and characterization of fluorescent CdS quantum dots used for the direct detection of GST fusion proteins," Nanomaterials and Nanotechnology, 2: 10. |
[24] | K. Deepa, S. Senthil, S. Shriprasad, and J. Madhavan, "CdS quantum dots sensitized solar cells (2014)" International Journal of Chem Tech Research, 6: 1956–1958. |
[25] | N. Safta, J-P. Lacharme and C. A. Sébene (1993) Clean Si(110): a surface with intrinsic or extrinsic defects ?,’’ Surf. Sci. 287/288: 312, 1993. |
[26] | N. Safta, J. P. Lacharme, A. Cricenti, A. Taleb-Ibrahimi, Indlekofer, V.Aristov, C. A. Sébenne, G. Le Lay and B. Nesterenko (1995) Core level spectra of clean “2 × 8” vicinal Si(110)’’, Nuclear Instruments and Methods in Physics Research B. 97: 372. |
[27] | A. Cricenti, G. Le Lay, V. Yu Aristov, B. Nesterenko, N. Safta, J.P. Lacharme, C.A. Sébenne, A. Taleb-Ibrahimi and G. Indlekofer (1995) High resolution syncrotron radiation Si 2p core-level spectroscopy of Si(110)16x2’’, Journal of Electron Spectroscopy and related phenomena . 76: 613-617. |
[28] | L. Cao, S. Huang, and E. S (2004) "ZnS/CdS/ZnS quantum dot quantum well produced in inverted micelles," J. Colloid Interface Sci. 273: 478–482. |
[29] | H. Kumano, A. Ueta, and I. Suemune (2002) "Modified spontaneous emission properties of CdS quantum dots embedded in novel three-dimensional microcavities," Physica E. 13: 441-445. |
[30] | Y. C. Zhang, W. W. Chen, and X. Y. Hu (2007) "In air synthesis of hexagonal Cd1-xZnxS nanoparticles from single-source molecular precursors," Mater. Lett. 61: 4847-4850. |
[31] | K. Tomihira, D. Kim, and M. Nakayama (2005) "Optical properties of ZnS-CdS alloy quantum dots prepared by a colloidal method," J. Lumin. 112: 131- 135. |
[32] | Z. Khéfacha, N. Safta and M. Dachraoui (2016) The Band Gap Energy Calculated for Cd1- xZnxS Quantum Dots grown by the Sol gel Method,’’ International Journal of Applied Chemistry. 12: 573-579. |
[33] | N. Safta, A. Sakly, H. Mejri and Y. Bouazra. (2006), “Electronic and optical properties of Cd1-xZnxS nanocrystals’’ Eur. Phys. J. B 51: 75-78 |
[34] | A. Sakly, N. Safta, A. Mejri, H. Mejri, A. Ben Lamine (2010), The Excited Electronic States Calculated for Cd1-xZnxS Quantum Dots Grown by the Sol-Gel Technique’’ Journal of Nanomaterials 2010, Article ID 746520, 4 pages. doi:10.1155/2010/746520 |
[35] | N. Safta, A. Sakly, H. Mejri and M. A. Zaïdi (2006), Electronic properties of multi-quantum dot structures in Cd1-xZnxS alloy semiconductors’’ Eur. Phys. J. B 53: 35 – 38. |
[36] | S. Marzougui, and N. Safta (2015) “The excited electronic states and the oscillator strength calculated for flattened cylindrical Cd1-xZnxS quantum dots,” International Journal of Chemistry and Materials Research, 3: 17-26. |
[37] | A. Sakly, N. Safta, H. Mejri, A. Ben Lamine (2009), The electronic band parameters calculated by the Kronig–Penney method for Cd1-xZnxS quantum dot superlattices’’ J. Alloys Compd. 476: 648–652. |
[38] | A. Sakly, N. Safta, H. Mejri, A. Ben Lamine. (2011), The electronic states calculated using the sinusoidal potential for Cd1-xZnxS quantum dot superlattices’’ J. Alloys Compd.509: 2493–2495. |
[39] | S. Marzougui, N. Safta. (2014), The electronic band parameters calculated by the Triangular potential model for Cd1-xZnxS quantum dot superlattices’’ IOSR-JAP 5 (5): 36-42. |
[40] | S. Marzougui, N. Safta. (2014), The electronic band parameters calculated by the Tight Binding Approximation for Cd1-xZnxS quantum dot superlattices’’ IOSR-JAP 6 (2): 15-21 |
[41] | S. Marzougui, N. Safta. (2014), A theoretical study of the electronic properties of Cd1-xZnxS quantum dot superlattices’’ American Journal of Nanoscience and Nanotechnology 2 (3): 45-49. |
[42] | S. Marzougui and N. Safta (2014) “A theoretical study of the heavy and light hole properties of Cd1-xZnxS quantum dot superlattices.,” International Journal of Materials Science and Applications. 3: 274-278. |
[43] | S. Marzougui and N. Safta (2015) " The Electronic Band Parameters Calculated by a Novel Potential Model for Cd1-xZnxS Quantum Dot Super lattices,” Research journal of Materials science. 3: 9-14. |
[44] | S. Marzougui and N. Safta (2015) “The electron transmission coefficient calculated for Cd1-xZnxS quantum dots-Application in the non volatile memories” International Journal of Applied Engineering Research. 10 (21): 42275-42278. |
[45] | Z. Khéfacha, N. Safta and M. Dachraoui (2017) “The energy levels splitting calculated for electrons in a double Cd1-xZnxS quantum dot” To be published. |
APA Style
Zoubeida Khefacha, Nabil Safta, Mohamed Dachraoui. (2017). The Energy Levels Splitting Calculated for the Heavy and Light Holes in a Cd1-xZnxS Double Quantum Dot. American Journal of Nano Research and Applications, 5(3), 32-36. https://doi.org/10.11648/j.nano.20170503.11
ACS Style
Zoubeida Khefacha; Nabil Safta; Mohamed Dachraoui. The Energy Levels Splitting Calculated for the Heavy and Light Holes in a Cd1-xZnxS Double Quantum Dot. Am. J. Nano Res. Appl. 2017, 5(3), 32-36. doi: 10.11648/j.nano.20170503.11
AMA Style
Zoubeida Khefacha, Nabil Safta, Mohamed Dachraoui. The Energy Levels Splitting Calculated for the Heavy and Light Holes in a Cd1-xZnxS Double Quantum Dot. Am J Nano Res Appl. 2017;5(3):32-36. doi: 10.11648/j.nano.20170503.11
@article{10.11648/j.nano.20170503.11, author = {Zoubeida Khefacha and Nabil Safta and Mohamed Dachraoui}, title = {The Energy Levels Splitting Calculated for the Heavy and Light Holes in a Cd1-xZnxS Double Quantum Dot}, journal = {American Journal of Nano Research and Applications}, volume = {5}, number = {3}, pages = {32-36}, doi = {10.11648/j.nano.20170503.11}, url = {https://doi.org/10.11648/j.nano.20170503.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.20170503.11}, abstract = {This work reports on a theoretical investigation of a double Cd1-xZnxS quantum dot embedded in an insulating material.The quantum dots are assumed to have a flattened cylindrical geometry with a finite barrier at the boundary.The energy levels splitting has been computed, using the tight binding approximation, in the case of the heavy and light holes, as a function of zinc composition for different inter-quantum dot separations. An analysis of the results shows that, for the light holes, the coupling is maximum when x=0.8. Moreover, it has been demonstrated the strong localization character of the heavy holes in this nanostructure.}, year = {2017} }
TY - JOUR T1 - The Energy Levels Splitting Calculated for the Heavy and Light Holes in a Cd1-xZnxS Double Quantum Dot AU - Zoubeida Khefacha AU - Nabil Safta AU - Mohamed Dachraoui Y1 - 2017/06/14 PY - 2017 N1 - https://doi.org/10.11648/j.nano.20170503.11 DO - 10.11648/j.nano.20170503.11 T2 - American Journal of Nano Research and Applications JF - American Journal of Nano Research and Applications JO - American Journal of Nano Research and Applications SP - 32 EP - 36 PB - Science Publishing Group SN - 2575-3738 UR - https://doi.org/10.11648/j.nano.20170503.11 AB - This work reports on a theoretical investigation of a double Cd1-xZnxS quantum dot embedded in an insulating material.The quantum dots are assumed to have a flattened cylindrical geometry with a finite barrier at the boundary.The energy levels splitting has been computed, using the tight binding approximation, in the case of the heavy and light holes, as a function of zinc composition for different inter-quantum dot separations. An analysis of the results shows that, for the light holes, the coupling is maximum when x=0.8. Moreover, it has been demonstrated the strong localization character of the heavy holes in this nanostructure. VL - 5 IS - 3 ER -