The UV absorption spectra of water with different electric charge (potential) were obtained. It was shown that UV absorption spectra of water with negative electric charge (potential) have the sharp peaks with maximum in the range 190 – 200 nm and UV absorption spectra of water with positive electric charge (potential) have the wide peaks with maximum in the range 200 – 220 nm. It was asked to explain this absorption. It was also established that UV absorption spectra of water solutions of surface inactive substances have sharp peaks with a maximum in the range 190 – 200 nm and UV absorption spectra of solutions of surface active substances have the wide peaks with a maximum in the range 200 – 220 nm. The UV absorption spectra of DNA solutions, which were prepared on the water with different electric charge (potential), were obtained. It was shown that these spectra are dependent on the electric charge (potential) of water used. It was proposed that UV absorption spectra of aqueous DNA reflect mostly the spectral properties of charged water or charged cuvette.
Published in | European Journal of Biophysics (Volume 3, Issue 3) |
DOI | 10.11648/j.ejb.20150303.11 |
Page(s) | 19-22 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
UV Absorption Spectra, Electric Charge, Electric Potential, DNA
[1] | Shabarova Z.A. and Bogdanov A.A. (1978) Chemistry of Nucleic Acids and their Components, Moscow: Chemistry. |
[2] | Nekrasov B.V. (1974) Bases of General Chemistry 1, Moscow: Chemistry. |
[3] | Fridrichsberg D.A. (1974) Course of Colloid Chemistry Leningrad: Chemistry. |
[4] | Stark, K.B.; Gallas, J.M.; Zajac G.W.; Golab, J.T.; Gidanian, S.; McIntire, T.; Farmer, P.J. (2005) The effect of stacking and redox state on optical absorption spectra of melanins- a comparison of theoretical and experimental results. J. Phys. Chem. B., 109, 1970-1977. |
[5] | Israel H., and Knopp R. (1962) Zum Problem der Ladungbildung beim Verdaumpfen, Arch. Meteorol., Geophys. and Bioklimatol. A13, 199-206. |
[6] | Latham J., and Stow C.D. (1965) Electrification of evaporation of ice crystals. Materials of Intern. Conf. in Tokyo, 352–356. |
[7] | Krasnogorskaja N.V. (1984) Electromagnetic fields in the earth’s atmosphere and their biological significance 1, Moscow: Nauka. |
[8] | Pivovarenko, Y. (2015) A Charge Distribution in the Earth’s Atmosphere American Journal of Physics and Applications. 3 (3), 67-68. |
[9] | Doshi, R., Day, P. J. R., and Tirelli, N. (2009) Dissolved oxygen alteration of the spectrophotometric analysis and quantification of nucleic acid solutions. Biochemical Society Transactions, 37(2), 466–470. |
[10] | Doshi, R., Day, P.J.R., Carampin, P., Blanch, E., Statford, I.J. and Tirelli, N. (2010) Spectrophotometric analysis of nucleic acids: oxygenation-dependant hyperchromism of DNA. Anal. Bioanal. Chem., 396, 2331–2339. |
[11] | Pivovarenko, Y. V. (2014) Hypochromism degassed solutions of DNA Modern high technologies. 3, 147-150. |
[12] | Mergny, J.-L., Li, J., Lacroix, L., Amrane, S. and Chaires, J. B. (2005) Thermal difference spectra: a specific signature for ucleic acid structures. Nucleic Acids Res., 33(16), 1–6. |
APA Style
Pivovarenko Yuri Vadimovich. (2015). UV Absorbance of Aqueous DNA. European Journal of Biophysics, 3(3), 19-22. https://doi.org/10.11648/j.ejb.20150303.11
ACS Style
Pivovarenko Yuri Vadimovich. UV Absorbance of Aqueous DNA. Eur. J. Biophys. 2015, 3(3), 19-22. doi: 10.11648/j.ejb.20150303.11
AMA Style
Pivovarenko Yuri Vadimovich. UV Absorbance of Aqueous DNA. Eur J Biophys. 2015;3(3):19-22. doi: 10.11648/j.ejb.20150303.11
@article{10.11648/j.ejb.20150303.11, author = {Pivovarenko Yuri Vadimovich}, title = {UV Absorbance of Aqueous DNA}, journal = {European Journal of Biophysics}, volume = {3}, number = {3}, pages = {19-22}, doi = {10.11648/j.ejb.20150303.11}, url = {https://doi.org/10.11648/j.ejb.20150303.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ejb.20150303.11}, abstract = {The UV absorption spectra of water with different electric charge (potential) were obtained. It was shown that UV absorption spectra of water with negative electric charge (potential) have the sharp peaks with maximum in the range 190 – 200 nm and UV absorption spectra of water with positive electric charge (potential) have the wide peaks with maximum in the range 200 – 220 nm. It was asked to explain this absorption. It was also established that UV absorption spectra of water solutions of surface inactive substances have sharp peaks with a maximum in the range 190 – 200 nm and UV absorption spectra of solutions of surface active substances have the wide peaks with a maximum in the range 200 – 220 nm. The UV absorption spectra of DNA solutions, which were prepared on the water with different electric charge (potential), were obtained. It was shown that these spectra are dependent on the electric charge (potential) of water used. It was proposed that UV absorption spectra of aqueous DNA reflect mostly the spectral properties of charged water or charged cuvette.}, year = {2015} }
TY - JOUR T1 - UV Absorbance of Aqueous DNA AU - Pivovarenko Yuri Vadimovich Y1 - 2015/06/01 PY - 2015 N1 - https://doi.org/10.11648/j.ejb.20150303.11 DO - 10.11648/j.ejb.20150303.11 T2 - European Journal of Biophysics JF - European Journal of Biophysics JO - European Journal of Biophysics SP - 19 EP - 22 PB - Science Publishing Group SN - 2329-1737 UR - https://doi.org/10.11648/j.ejb.20150303.11 AB - The UV absorption spectra of water with different electric charge (potential) were obtained. It was shown that UV absorption spectra of water with negative electric charge (potential) have the sharp peaks with maximum in the range 190 – 200 nm and UV absorption spectra of water with positive electric charge (potential) have the wide peaks with maximum in the range 200 – 220 nm. It was asked to explain this absorption. It was also established that UV absorption spectra of water solutions of surface inactive substances have sharp peaks with a maximum in the range 190 – 200 nm and UV absorption spectra of solutions of surface active substances have the wide peaks with a maximum in the range 200 – 220 nm. The UV absorption spectra of DNA solutions, which were prepared on the water with different electric charge (potential), were obtained. It was shown that these spectra are dependent on the electric charge (potential) of water used. It was proposed that UV absorption spectra of aqueous DNA reflect mostly the spectral properties of charged water or charged cuvette. VL - 3 IS - 3 ER -